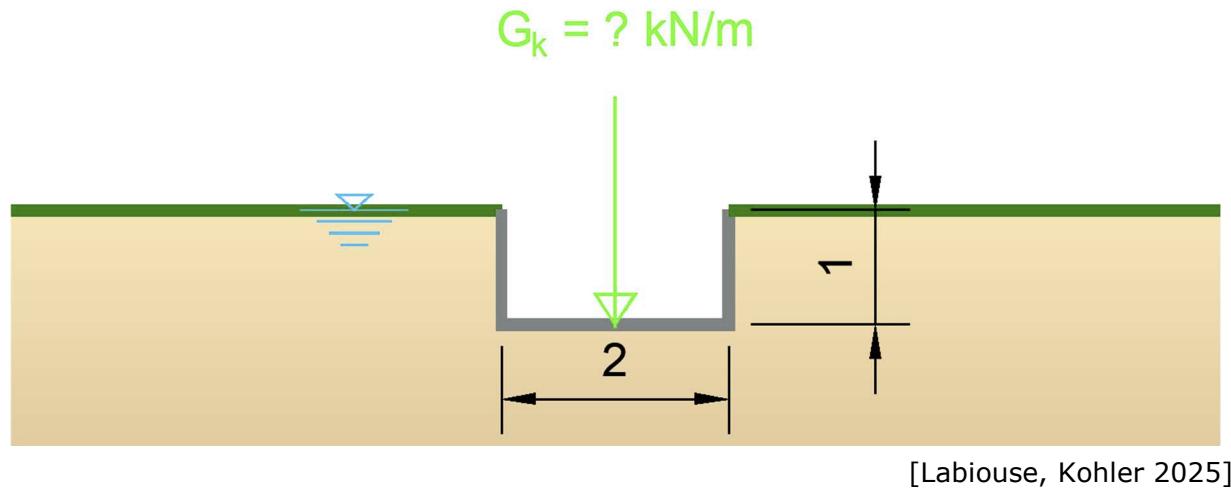


PROBABILISTIC VS. DETERMINISTIC DESIGN IN EUROCODES 2.0, WITH POTENTIAL ECONOMIC GAIN

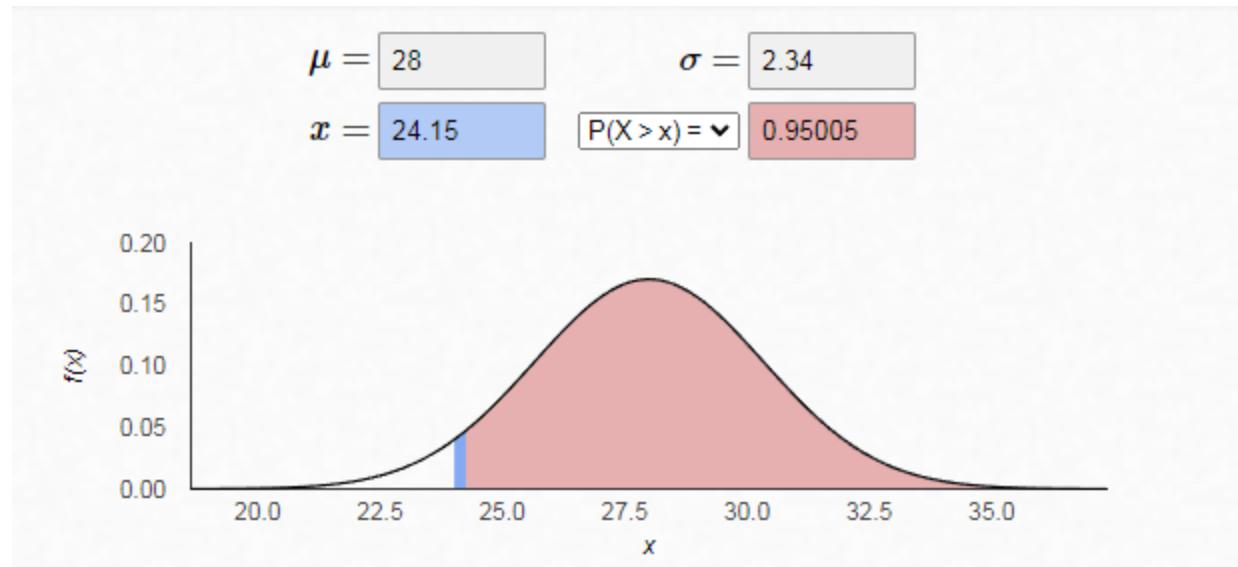
Stéphane COMMEND
GeoMod SA & HEIA-FR
Jocelyn MININI
HEIA-FR

Outline


- Problem description
- Deterministic approach, with respect to SIA 267 (Swisscodes)
- FE model and validation
- Probabilistic approach
 - Reference case: compute G_k knowing width b
 - What if $COV >> ?$
 - What if more lab tests (Bayesian approach) ?
 - Inverse problem: design width b knowing G_k
- Conclusions

Outline

- **Problem description**
- Deterministic approach, with respect to SIA 267 (Swisscodes)
- FE model and validation
- Probabilistic approach
 - Reference case: compute G_k knowing width b
 - What if $COV >> ?$
 - What if more lab tests (Bayesian approach) ?
 - Inverse problem: design width b knowing G_k
- Conclusions


Problem description

- Consider the following spread continuous footing, with $b = 2$ m
- Given soil's strength parameters c' and ϕ'
- What is the load G_k that we can put on the footing?

Problem description

- Assume a deterministic value for $c'_k = 5 \text{ kPa}$
- Assume the following normal distribution for ϕ'
 - $\phi'_m = 28^\circ$, with a standard deviation of 2.34° (COV = 8.4%)
 - this yields $\phi'_k = 24.15^\circ$ (5% fractile)

Problem description

- Typical COV for ϕ' are given in the 2024 report
<https://eurocodes.jrc.ec.europa.eu/publications/reliability-based-verification-limit-states-geotechnical-structures>
- COV = 8.4% falls in the low property variability, typical of good-quality direct laboratory or field measurements

Geotechnical parameter	Property variability	COV (%)
Effective stress friction angle	Low ¹	5-10
	Medium ²	10-15
	High ³	15-20
Horizontal stress coefficient	Low ¹	30-50
	Medium ²	50-70
	High ³	70-90

(¹) Typical of good-quality direct laboratory or field measurement.

(²) Typical of indirect correlations with good field data, except for the SPT.

(³) Typical of indirect correlations with SPT field data and with strictly empirical correlations.

Source: Phoon and Kulhawy 2008

Outline

- Problem description
- **Deterministic approach, with respect to SIA 267 (Swisscodes)**
- FE model and validation
- Probabilistic approach
 - Reference case: compute G_k knowing width b
 - What if $COV >> ?$
 - What if more lab tests (Bayesian approach) ?
 - Inverse problem: design width b knowing G_k
- Conclusions

Deterministic approach

- Based on SIA 267 (SwissCodes), following EC7-3 and Terzaghi

$$R_N = A' (c' N_c + q' N_q + 0.5 \gamma^* B' N_\gamma)$$

$$N_q = e^{\pi \tan \phi'} \tan^2 \left(45 + \frac{\phi'}{2} \right)$$

$$N_c = (N_q - 1) \cot \phi'$$

$$N_\gamma = 1.8 (N_q - 1) \tan \phi'$$

- Application of resistance partial factors

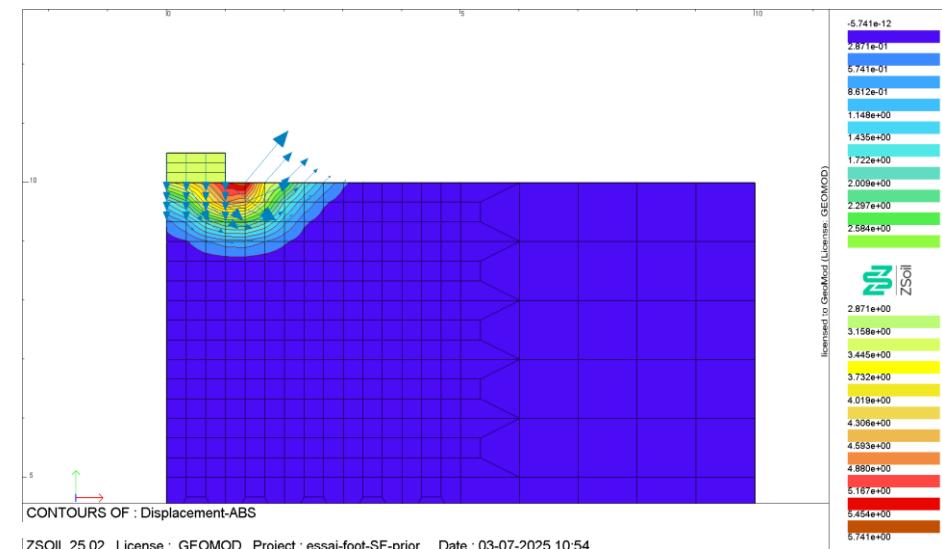
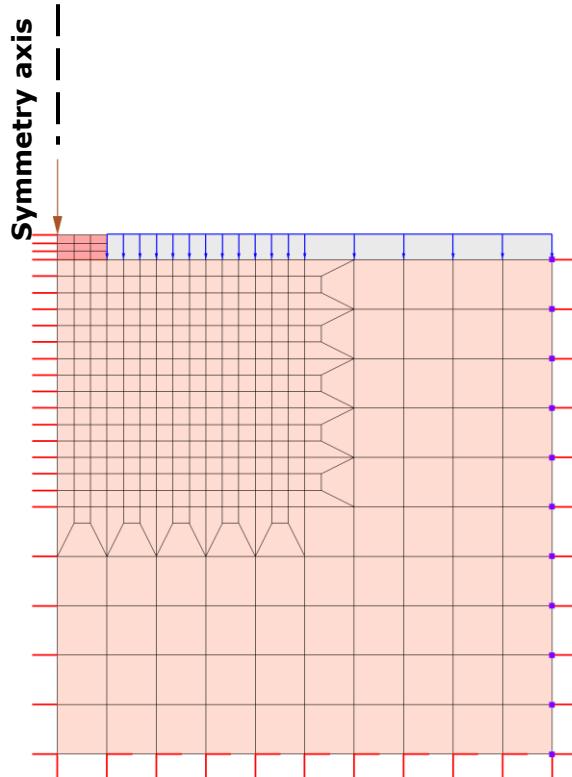
- $c'_d = c'_k / 1.5 = 3.33 \text{ kPa}$

- $\tan(\phi_d) = \tan(\phi_k) / 1.2 \Rightarrow \phi_d = 20.49^\circ$

- This yields $R_{Nd} = 271 \text{ kN/m}'$

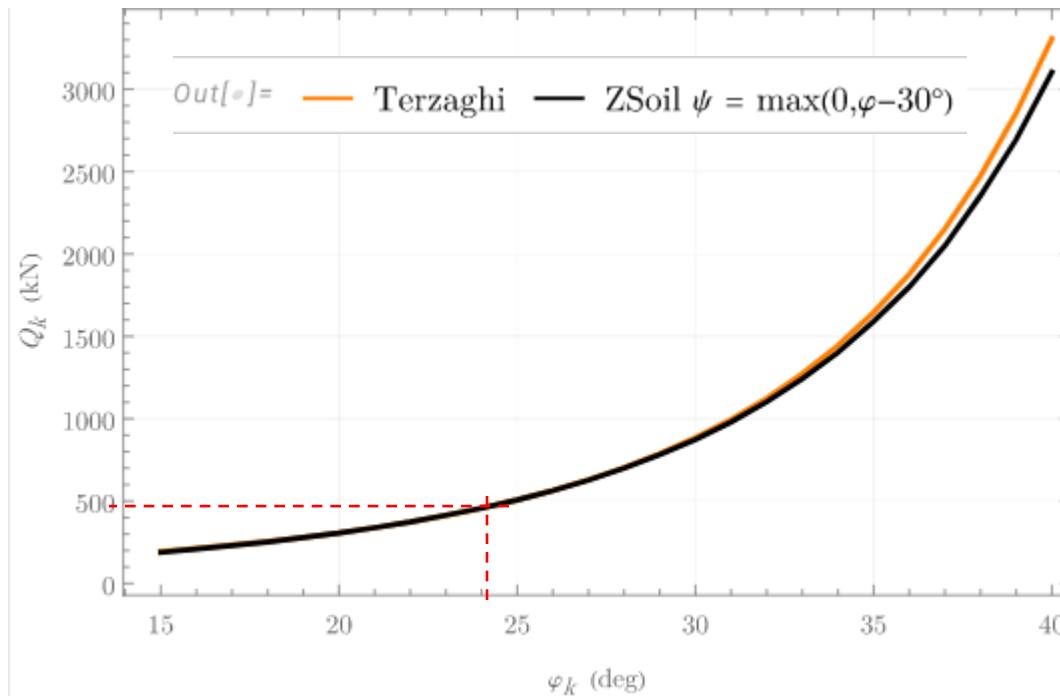
- Assuming a load partial factor $\gamma_F = 1.35 \Rightarrow$

SIA	
Phi_k [°]	24.15
Phi_d [°]	20.49
Phi_d [rad]	0.4
c_k [kPa]	5.0
c_d [kPa]	3.3
N_q	6.7
N_c	15.3
N_gamma	3.8
q'_pd [kPa]	135.5
R_Nd [kN/m']	271.0
gamma_F	1.35
G_k [kN/m']	200.8



[Labouse, Kohler 2025]

Outline

- Problem description
- Deterministic approach, with respect to SIA 267 (Swisscodes)
- **FE model and validation**
- Probabilistic approach
 - Reference case: compute G_k knowing width b
 - What if $COV >> ?$
 - What if more lab tests (Bayesian approach) ?
 - Inverse problem: design width b knowing G_k
- Conclusions


FE model and validation

- The following 2D plane strain mesh is used with ZSoil v25.02
- The load is applied step by step, until divergence occurs

FE model and validation

- Bearing capacity (here without any partial factors) obtained with ZSoil is shown to match the Terzaghi manual approach, for a large range of friction angles
- In particular, $R_N = 464.4$ kN/m' for $\phi'_k = 24.15^\circ$ and $c'_k = 5$ kPa

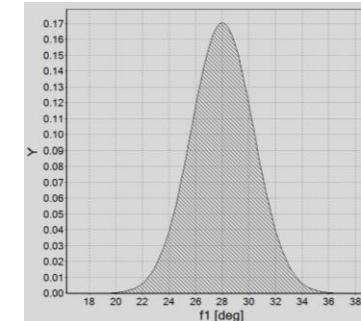
Outline

- Problem description
- Deterministic approach, with respect to SIA 267 (Swisscodes)
- FE model and validation
- **Probabilistic approach**
 - **Reference case: compute G_k knowing width b**
 - What if $COV >> ?$
 - What if more lab tests (Bayesian approach) ?
 - Inverse problem: design width b knowing G_k
- Conclusions

Probabilistic approach

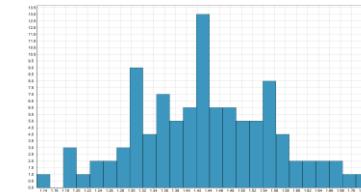
Reference case: compute G_k knowing width b

- How to switch from deterministic to probabilistic framework?
- Methodology:
 - Apply load $R_N = 464.4 \text{ kN/m}'$ ($\phi'_k = 24.15^\circ$, $c'_k = 5 \text{ kPa}$)
 - Introduce ϕ' PDF = Gaussian (28° , 2.34°)
 - Compute probability of failure P_f (safety factor < 1.0)
 - Compare with target reliability values, given in
<https://eurocodes.jrc.ec.europa.eu/publications/reliability-based-verification-limit-states-geotechnical-structures>

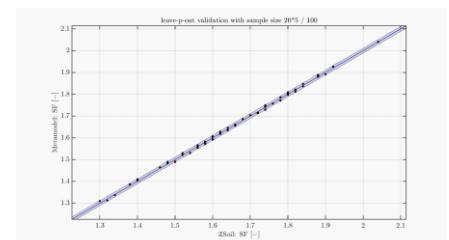

Consequence class	1-year reference period β	50-year reference period	
		β	$P_{f,50}$
CC3	5.2	4.3	$\sim 10^{-5}$
CC2	4.7	3.8	$\sim 10^{-4}$
CC1	4.2	3.3	$\sim 10^{-3}$

Source: EN 1990-1

Probabilistic approach

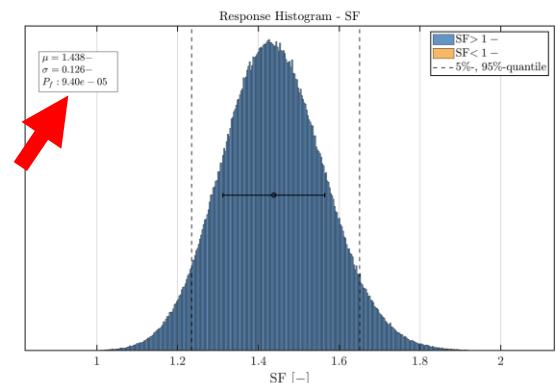

Reference case: compute G_k knowing width b

- Define ϕ' PDF in ZSoil postprocessor



- Compute experimental design:

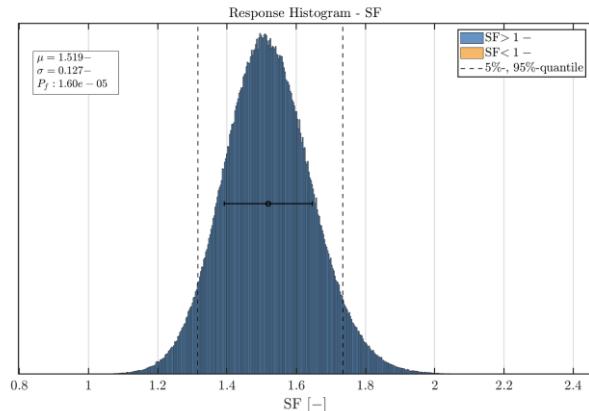
100 samples to evaluate SF



- Generate meta-model (PCE) for SF

- Perform reliability analysis:

$$P_f (SF < 1.0) = 9.4e-5$$


Probabilistic approach

Reference case: compute G_k knowing width b

- $P_f < 1e-4$ ✓ so $G_k = 464.4 \text{ kN/m}' / 1.35 = 344 \text{ kN}$
- **72% gain** with respect to G_k (deterministic) = $200.8 \text{ kN/m}'$!
- Performing a full probabilistic analysis with
 - ϕ' PDF = Gaussian (mean = 28° , COV = 8.35%)
 - c' PDF = Gaussian (mean = 7.45 kPa, COV = 20%)
 - G_k PDF = Gaussian (mean = $464.4 \text{ kN/m}'$, COV = 5%)

Leads to $P_f = 1.6e-5$

- Amazing! But...

Outline

- Problem description
- Deterministic approach, with respect to SIA 267 (Swisscodes)
- FE model and validation
- **Probabilistic approach**
 - Reference case: compute G_k knowing width b
 - **What if COV >> ?**
 - What if more lab tests (Bayesian approach) ?
 - Inverse problem: design width b knowing G_k
- Conclusions

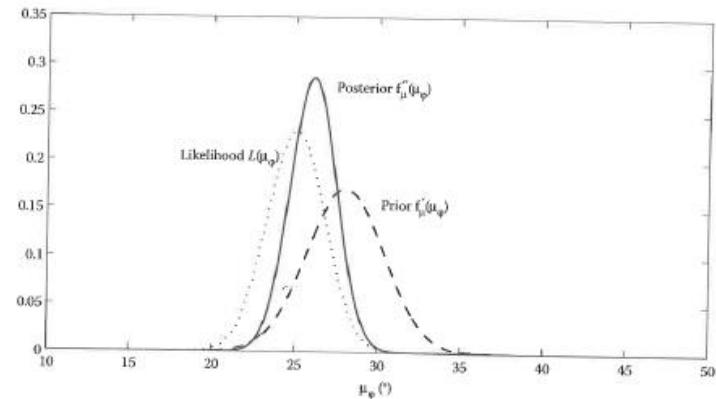
Probabilistic approach

What if COV >> ?

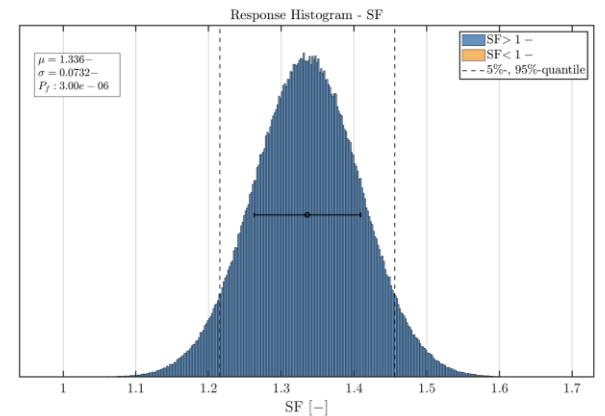
- Imagine COV is doubled
- ϕ' PDF = Gaussian (mean = 28° , COV = 16.7%) => $\phi'_k = 20.3^\circ$
- Deterministic design yields $G_k = 143.9 \text{ kN/m}'$
- Probabilistic design with **$R_N = 316.3 \text{ kN/m}'$** :

Pf = 4e-3 => no gain !

- Importance of lab tests to lower COV...


Outline

- Problem description
- Deterministic approach, with respect to SIA 267 (Swisscodes)
- FE model and validation
- **Probabilistic approach**
 - Reference case: compute G_k knowing width b
 - What if $COV >> ?$
 - **What if more lab tests (Bayesian approach) ?**
 - Inverse problem: design width b knowing G_k
- Conclusions

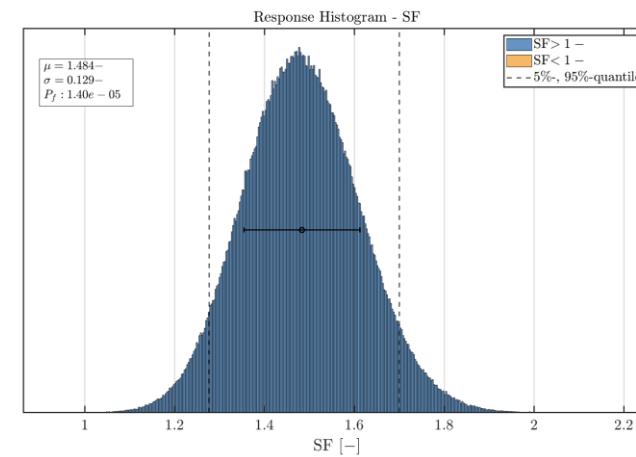
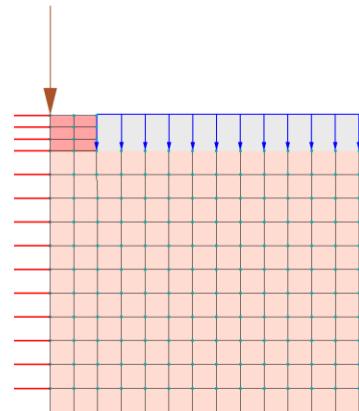

Probabilistic approach

What if more lab tests?

- Imagine we have three additional shear tests at hand, leading to:
 - $\phi'_1 = 25.6^\circ, \phi'_2 = 25.5^\circ, \phi'_3 = 24^\circ$
- Using Bayesian updating, the posterior distribution for ϕ' will be: Gaussian (mean = 26.08° , COV = 5.3%)
- Note that COV <<, but also mean < !
- Performing the same analysis as before, we get $P_f = 3e-6 << 1e-4$ ✓
- With $b = 1.8$ m (instead of 2 m), we get $P_f = 1.7e-4 \approx 1e-4$
(10% gain on concrete)

Straub D., Papaioannou I.: Bayesian analysis for learning and updating geotechnical parameters and models with measurements – 5. In: Risk and Reliability in Geotechnical Engineering (eds. Phoon K.-K., Ching J.), CRC Press, 2015

Outline



- Problem description
- Deterministic approach, with respect to SIA 267 (Swisscodes)
- FE model and validation
- **Probabilistic approach**
 - Reference case: compute G_k knowing width b
 - What if $COV >> ?$
 - What if more lab tests (Bayesian approach) ?
 - **Inverse problem: design width b knowing G_k**
- Conclusions

Probabilistic approach

Inverse problem: design width b knowing G_k

- Methodology:

- Apply original load $G_k \times 1.35 = 200.8 \times 1.35 = 271 \text{ kN/m}'$
- Introduce ϕ' PDF = Gaussian (28° , 2.34°)
- Find b such as $P_f < 1e-4$
- For $b = 1.35 \text{ m}$ (instead of 2 m), $P_f = 1.4e-5 << 1e-4$ ✓

Outline

- Problem description
- Deterministic approach, with respect to SIA 267 (Swisscodes)
- FE model and validation
- Probabilistic approach
 - Reference case: compute G_k knowing width b
 - What if $COV >> ?$
 - What if more lab tests (Bayesian approach) ?
 - Inverse problem: design width b knowing G_k
- **Conclusions**

Conclusions

- For $b = 2$ m, with deterministic design (SIA 267), and $\phi'_k = 24.15^\circ$
 $G_k = 200$ kN/m', $G_d = 270$ kN/m'
- Same, with probabilistic design, $\phi'_m = 28^\circ$ and COV = 8.35%
 $G_k = 344$ kN/m', $G_d = 465$ kN/m' (**72% gain on load**)
- But, with probabilistic design, $\phi'_m = 28^\circ$ and COV = 16.7%

NO GAIN

- Same, after a few (bad !) tests, $\phi'_m = 26.08^\circ$ and COV = 5.3%
 $b = 1.8$ m for $G_d = 464.4$ kN/m' (10% gain on concrete)

Conclusions

- Alternatively: probabilistic design with $G_d = 270 \text{ kN/m}'$
 $b = 1.35 \text{ m}$ (**33% gain on concrete**)
- The lower COV... the more benefits => **testing is always good and can lead to significant gains**
- Thank you to V. Labiouse, D. Kohler (HEIA-FR)
- Questions?